
Int J Software Informatics, Volume 9, Issue 2 (2015), pp. 177–203 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c⃝2015 by ISCAS. All rights reserved. Tel: +86-10-62661040

Symbolic Test-generation in HOL-TESTGEN/CirTA

A Case Study

Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff

(Univ. Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405, France

CNRS, Orsay, F-91405, France)

Email: {feliachi,gaudel,wolff}@lri.fr

Abstract HOL-TestGen/CirTA is a theorem-prover based test generation environment

for specifications written in Circus, a process-algebraic specification language in the

tradition of CSP. HOL-TestGen/CirTA is based on a formal embedding of its semantics in

Isabelle/HOL, allowing to derive rules over specification constructs in a logically safe way.

Beyond the derivation of algebraic laws and calculi for process refinement, the originality of

HOL-TestGen/ CirTA consists in an entire derived theory for the generation of symbolic

test-traces, including optimized rules for test-generation as well as rules for symbolic

execution. The deduction process is automated by Isabelle tactics, allowing to protract the

state-space explosion resulting from blind enumeration of data.

The implementation of test-generation procedures in CirTA is completed by an integrated

tool chain that transforms the initial Circus specification of a system into a set of equivalence

classes (or “symbolic tests”), which were compiled to conventional JUnit test-drivers.

This paper describes the novel tool-chain based on prior theoretical work on semantics

and test-theory and attempts an evaluation via a medium-sized case study performed on a

component of a real-world safety-critical medical monitoring system written in Java. We

provide experimental measurements of the kill-capacity of implementation mutants.

Key words: symbolic test-case generations; black box testing; theorem proving; model-

based testing; JUnit

Feliachi A, Gaudel MC, Wolff B. Symbolic test-generation in HOL-TestGen/CirTA a case

study. Int J Software Informatics, Vol.9, No.2 (2015): 177–203. http://www.ijsi.org/1673-

7288/9/i214.htm

1 Introduction

In this paper, we present a combination of test and proof techniques for the test of

system behaviour, in particular for tests of systems involving both complex data (i. e.

infinite or just large states) and concurrent, non-deterministic behaviour. We apply

proof techniques for the foundation of the rules – derived from a formal semantics

– for test-generation and execution in form of an optimized symbolic computation

controlled by proof-tactics. By engineering suitable front- and back-ends, we build a

novel integrated tool-chain, that computes, from a behavioral specification, concrete

JUnit-Testers used for the process-oriented verification of a (black-box) application.

Corresponding author: Burkhart Wolff, Email: wolff@lri.fr
Received 2014-12-08; Revised 2015-04-01; Accepted 2015-04-30.

178 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

We chose as starting point a process algebra in the tradition of CSP, namely

Circus[26]. One advantage of process algebras is that they come with a rich abstract

meta-theory, comprising both denotational and operational semantics. The latter

produces a natural symbolic foundation for labelled transition systems, where the

nodes were labelled with process-expressions representing classes of process states.

A particular advantage of process-algebras over other automata-theoretic

approaches and related temporal or modal logics consists in the fact that they

distinguish internal and external choice, which comes in handy in a test-theory

(such as Ref. [3]) where the non-deterministic choices of the tester must be

distinguished from the non-deterministic choices of the system under test (SUT). A

further advantage of the choice for Circus is that its processes have first-class state,

i. e. in contrast to CSP, thread-local variables over arbitrary, possibly infinite types

can be expressed directly.

The present work resides on the shoulders of giants: Besides the theoretic

foundations of process-algebras[14,21], there are a number of related test theories

(Refs. [3,8], just to name a few). With respect to the former, there had been some

works to represent their denotational semantics in a HOL theorem prover (see

Refs. [2,15,23]). This also holds for the denotational semantics for Circus that been

described in Ref. [11], where a basic version of CirTA has been applied to interactive

refinement proofs. Test-theories based on symbolic execution such as Ref. [3] have,

to the best of our knowledge, never been formalized in HOL before[12], which

represents a first and still partial step towards this now completed goal.

We claim the following contributions of this paper over prior work:
1. We extend the prior denotational semantics to a formal testing theory (partly

published in Ref. [12]); this requires a reconstruction of foundamental

notions,e.g. “symbolic variables” (just constants in Ref. [3]) and symbolic

execution,

2. This symbolic execution calculus has been extended by derived rules for

optimized test-generation and specific tactic support. The resulting integrated

environment is called CirTA.

3. CirTA has been completed by an improved front-end and a novel backend for

the generation of JUnit-testdrivers.

4. CirTA has been applied to a medium-size case study of a safety-critical medical

system, allowing for an experimental evaluation.

In particular, we would like to mention that CirTA profits from the underlying

Isabelle/HOL environment[18] and its HOL-TestGen [1] extension which gives access

to powerful, up-to-date constraint-solvers such as Z3[9]. Note, however, that the core

of CirTA’s test-case generation engine works very differently from HOL-TestGen;

while the latter is based on data-driven case-splitting strategies (i. e. splitting over

variables of data-types such as lists, trees, etc), the former works on constants of the

abstract type α process for which the CirTA environment generates constant definitions

from Circus input syntax.

This paper is organised as follows: After a presentation of the Circus language,

the basis of its formalization in Isabelle/HOL, we develop its formalized and machine-

supported testing theory resulting from refinement notions (3.4); the resulting test

Abderrahmane Feliachi, et al.: Symbolic Test-generation in HOL-TestGen/CirTA... 179

generation engine is described (3.5). This is a presentation of essentials of earlier

publications[11,12] meant to make this paper self-contained. Section 4 describes the

target of our case-study, which is a demultiplexer of a monitoring system, a highly

concurrent Java program used in a health-care application. Section 5 presents the

test theory of the system and the test specification. Finally, we present the results

of test generation experiments (5.2), and their test executions (5.3). The latter three

sections consist of original work.

2 Circus in Isabelle/HOL

Circus is a formal specification language[20] which integrates the notions of states

and complex data types (in a Z-like style) with communicating parallel processes

inspired from CSP. From Z, the language inherits the notion of a schema used to

model sets of (ground) states as well as syntactic machinery to describe pre-states and

post-states; from CSP, the language inherits the concept of communication events and

typed communication channels, the concepts of deterministic and non-deterministic

choice (reflected by the process combinators P �P ′ and P ⊓ P ′), the concept of

concealment (hiding) P\A of events in A occurring in the evolution of process P .

Due to the presence of state variables, the Circus synchronous communication operator

syntax is slightly different frome CSP: P J n | c | n ′ KP ′ means that P and P ′

communicate via the channels mentioned in c; moreover, P may modify the variables

mentioned in n only, and P ′ in n ′ only, n and n ′ are disjoint name sets.

Moreover, the language comes with a formal notion of refinement based on a

denotational semantics. It follows the failure/divergence semantics[21], (but coined

in terms of the Unifying Theories of Programming UTP[20]) providing a notion of

execution trace tr, refusals ref, and divergences. It is expressed in terms of the

UTP[13] which makes it amenable to other refinement-notions in UTP. Figure 1

presents a simple Circus specification, FIG, the fresh identifiers generator.

Figure 1. The Fresh Identifiers Generator in (Textbook) Circus

Isabelle and Isabelle/HOL.

Isabelle[18] is a generic theorem prover implemented in SML. It is based on the

so-called “LCF-style architecture”, which makes it possible to extend a small trusted

180 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

logical kernel by user-programmed procedures in a logically safe way. New object

logics can be introduced to Isabelle by specifying their syntax and semantics, by

deriving its inference rules from there and program specific tactic support for the

object logic. Isabelle is based on a typed λ-calculus including a Haskell-style type-

system with type-classes (e.g. in α :: order, the type-variable ranges over all types that

posses a partial ordering.). Higher-order logic (HOL)[4] is a classical logic. The Isabelle

instance Isabelle/HOL provides the usual logical connectives like ∧ , =⇒ , ¬
as well as the object-logical quantifiers ∀ x • Px and ∃ x • Px ; in contrast to first-order

logic, quantifiers may range over arbitrary types, including total functions f : : α ⇒ β.

HOL is centered around extensional equality = : : α ⇒ α ⇒ bool. HOL is

more expressive than first-order logic since, e.g. , induction schemes can be expressed

inside HOL as an ordinary formula containing second-order variables. Offering support

for data-types, records and recursive-function definitions including pattern-matching,

Isabelle/HOL has a “look-and-feel” of a programming language like SML or Haskell

on the one hand and a specification language roughly similar to Z providing logical

quantifiers ranging over elementary and function types. We will use HOL as semantic

meta-language of Circus and Isabelle/HOL as implementation framework and symbolic

engine to perform symbolic test generation of Circus specifications.

Extensible records in Isabelle/HOL.

Isabelle/HOL’s support for extensible records is of particular importance for our

work. Record types are denoted, for example, by:

record T = a::T1
b::T2

which implicitly introduces the record constructor La:=e1,b:=e2M and the update of

record r in field a, written as rLa:= xM, as well as the selectors x r. Extensible records

are represented internally by cartesian products with an implicit free component δ, i.e.

in this case by a triple of the type T1 × T2 × δ. Isabelle/HOL provides an alternative

syntax for the type of these triples: La7→T1,b7→T2,...M. The third component can

be referenced by a special selector more available on extensible records. Thus, the

record T can be extended later on using the syntax:

record ET = T + c::T3

The key point is that theorems can be established, once and for all, on T types, even

if future parts of the record are not yet known, and reused in the later definition

and proofs over ET-values. Using this feature, we can model the effect of defining the

alphabet of UTP processes incrementally while maintaining the full expressivity of

HOL wrt. the types of T1, T2 and T3.

2.1 Denotational semantics in CirTA

Embedding UTP Predicates and Relations in HOL.

The Circus denotational semantics[20] has been originally coined in terms of a

general framework for denotational semantics theories called the Unifying Theory of

Programs (UTP) proposed in Ref. [13]. Traditional UTP is based on an alphabetized

relational calculus, combining alphabetized predicates which are pairs (alphabet ,

Abderrahmane Feliachi, et al.: Symbolic Test-generation in HOL-TestGen/CirTA... 181

predicate) where the free variables appearing in the predicate are all in the alphabet,

e.g. ({x , y}, x > y). As such, it is very similar to the concept of a schema in Z .

We will not require a deep knowledge of UTP here; it suffices to understand

that the concept of alphabetized predicate can be reasonably truthfully represented in

Isabelle/HOL as sets of records, i. e. the alphabetized predicate above becomes in HOL

just the function:
λ A::Lx7→T,y7→T’M. x A > y A

where Lx7→T,y7→T’M is the record type of A and Lx7→T,y7→T’M⇒ bool is the type of

this predicate. Note that our UTP version allows for fully typed alphabets.

As a consequence, an alphabetized relation is an alphabetized predicate where

the alphabet is composed of input (undecorated) and output (dashed) variables. In

this case the predicate describes a relation between input and output variables, for

example ({x , x ′, y , y ′}, x ′ = x + y) which is a notation for: {(A,A’).x A’ = x A

+ y A}, which is a set of pairs, thus a relation; note that typed sets and boolean

functions are isomorph in HOL.

Standard predicate calculus operators are used to combine alphabetized

predicates. The definition of these operators is very similar to the standard one,

with some additional — but in our context irrelevant — constraints on the

alphabets.

Embedding UTP Designs and processes in HOL.

In UTP, in order to explicitly record the termination of a program, alphabetized

relations of a particular form were introduced. These relations are called designs and

their alphabet should contain the special boolean variable ok (i. e., ok of type bool is

element of the alphabets we are talking from now on). ok is used to record the start

and termination of a program. A UTP design is formally defined as follows:
(P ⊢ Q) ≡ λ (A,A’). (ok A ∧ P (A,A’)) −→ (ok A’ ∧ Q (A,A’))

where P and Q describes the pre and post conditions of the design.

By extending the alphabet (and specializing the corresponding record type), the

concept of a reactive process is introduced in UTP. Three observational variables are

defined for this subset of alphabetized relations: wait, tr and ref. The boolean

variable wait records if the process is waiting for an interaction or has terminated.

tr records the list (trace) of interactions the process has performed so far. The

variable ref contains the set of interactions (events) the process may refuse to

perform. These observational variables defines the basic alphabet of all reactive

processes called “alpha_rp”. The reader familiar with the denotational semantics of

CSP[21] might recognize the classical trace/refusal sets as denotations for the

so-called failure-semantics model.

As in standard CSP, not all combinations of traces and failures constitute a legal

process; for this reason, some healthiness conditions are defined over wait, tr and

ref to ensure that a reactive process satisfies some properties[6]. Alltogether, these

conditions are grouped to a predicate is_CSP_process; A process that satisfies these

conditions is said to be CSP healthy.

Embedding Circus Denotational Semantics in HOL/UTP.

Based on this HOL/UTP foundation, it is now straightforward to convert the

Circus textbook operator semantics one by one to formalized Isabelle/HOL

182 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

denotational definitions. The denotational theory of these operator definitions serve

as semantic “gold-standard”, assuring logical consistency of the derived algebraic

equivalences of processes as well as derived rules for operational semantics and our

testing theory.

The set of Circus healthy reactive process expressions is captured by the HOL type

actions in CirTA. It is based on the type (α,σ)relation_rp which is an instance

of the reactive process type alpha_rp extended by channels of type α; the further

possible record extensions (the more-field of the extensible record) were summarized

under σ and are used for thread-local and global state variables.

Wrapping up, we can encode the concept of a process for a family of possible

state instances by the type definition for action:

typedef(Action)

(α::chan_eq,σ) action = {p::(α,σ)relation_rp. is_CSP_process p}

proof - {...}

qed

As mentioned before, a type-definition introduces a new type by stating a set. In

our case it is the set of reactive processes that satisfy the healthiness-conditions for

CSP-processes, isomorphic to the new type. Isabelle enforces in a type-definition a

proof assuring the non-emptyness of the type; this proof is ommitted here.

Technically, this Isabelle specification construct introduces two constants

Abs_Action and Rep_Action respectively of type

(α,σ) relation_rp ⇒(α,σ) action and (α,σ) action ⇒(α,σ) relation_rp.

Moreover, it generates the usual two axioms expressing the bijection between the

type and its corresponding set: Abs_Action(Rep_Action(X))= X and

is_CSP_process p =⇒ Rep_Action(Abs_Action(p))= p (recall that the predicate

is_CSP_process captures the healthiness conditions).

Every Circus action is an abstraction of an alphabetized predicate. In Ref. [10],

we introduce the definitions of all the actions and operators using their denotational

semantics. The CirTA semantics library contains, for each action, the proof that this

predicate is CSP healthy.

We refrain from a full-blown presentation of all operators here (a complete

treatment is contained in Refs. [11,10]) and present just two: the sequential

composition of processes and the communication operator for prefixed actions.

The former is particularly easy to formulate in Circus taking advantage of the

UTP framework:

definition Seq::(’α,’σ) action ⇒(’α,’σ) action ⇒(’α,’σ) action

(infixl "’;’" 24)

where "P ’;’ Q ≡ Abs_Action (Rep_Action P ;; Rep_Action Q)"

In other words, actions P and Q were represented as transitions, i. e. relations between

action_rp’s, which were composed by the HOL relational composition _ ;; _ and

abstracted to an action again.

The semantics of the prefix action is given by the following definition:

definition Prefix c x P S ≡ Abs_Action(R (true ⊢ Y)) ’;’ S

where Y = do_I c x P ∧ (λ (A, A’). more A’ = more A)

Abderrahmane Feliachi, et al.: Symbolic Test-generation in HOL-TestGen/CirTA... 183

where c is a channel constructor, x is a variable (of type var), P is a predicate and S

is an action. This definition states that the prefixed action semantics is given by the

interaction semantics operator (do_I) which is ommitted here (the interested reader

is referred to Ref. [10]).

Instead of Prefix c x true P we configure the Isabelle syntax engine that it

parses the common notation c?x→P(x) equivalently.

2.2 ’Algebraic’ semantics

Based on the denotational definitions of all operators, it is possible (and, due to

the UTP representation in terms of relational algebra, actually fairly easy) to derive a

number of equations on Circus actions. These equations (called ’axiomatic semantics

in the CSP literature, although in our context they are not axioms but formally proven

theorems) allow for the normalization of CSP processes at various places and are a

crucial pre-requisite to symbolic evaluation and refinement proofs.

There are about one hundred equations in the denotational theories of Circus for

space reasons, we mention only a few of them:

comp-ndet-r-distr: (P ;; (Q ⊓ R)) = ((P ;; Q) ⊓ (P ;; R))

comp-ndet-l-distr: ((P ⊓ Q) ;; R) = ((P ;; R) ⊓(Q ;; R))

cond-idem: (P ▹ b ◃ P) = P

comp_assoc: (P ;; (Q ;; R)) = ((P ;; Q) ;; R)

ndet_symm: (P::’a relation) ⊓ Q = Q ⊓ P

ndet_assoc: P ⊓ (Q ⊓ R) = (P ⊓ Q) ⊓ R

2.3 Operational semantics

The configurations of the transition system for the operational semantics of Circus

are triples (c | s |= A) where c is a constraint over the symbolic variables in use, s

a symbolic state, and A a Circus action. The transition rules over configurations

have the form: (c0 | s0 |= A0)
e−→ (c1 | s1 |= A1), where the label e represents the

performed symbolic event or ε.

The transition relation is also defined in terms of UTP and Circus actions. The

formalization of the operational semantics is realized on top of Isabelle/Circus. In

order to introduce the transition relation for all Circus actions, configurations must

be defined first. Following the shallow symbolic representation, we introduce the

following definitions in Isabelle/HOL.

Constraints.

In the Circus testing theory[3], the transition relation of the operational

semantics is defined symbolically. The symbolic execution system is based on UTP

constructs. Symbolic variables (values) are represented by UTP variables with fresh

names generated on the fly. The (semantics of the) constraint is represented by a

UTP predicate over the values of these symbolic variables.

In our shallow symbolic representation, symbolic values are given by HOL

variables, that can be constrained in proof terms, by expressing predicates over

them in the premises. This makes the symbolic configuration defined on free HOL

variables that are globally constrained in the context. Thus, the explicit

184 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

representation of the constraint in the configuration is not needed. It will be

represented by a (globally constrained) symbolic state and an action.

Actions.

The action component of the operational semantics as defined in Ref. [3] is a

syntactic characterization of some Circus action. This corresponds to the syntax of

actions defined in the denotational semantics. In our representation of the

operational semantics, this component is a semantic characterization of Circus

actions. The Circus action type is given by (Θ, σ) action where Θ and σ are

polymorphic type parameters for channels and alphabet ; these parameters are

instantiated for concrete processes.

Labels and Channels.

All the transitions over configurations are decorated with labels to keep a trace

of the events that the system may perform. A label may refer to a communication

with a symbolic input or output value, a synchronization (without communication)

or an internal (silent) transition ε. In our representation, channels are represented

by constructor functions of a data-type specific for a Circus process specification. For

our symbolic trace example in subsection 2.5, we will have

datatype Demux_channels = get thread-id×data
| put thread-id×data
| finish thread-id×data,

which is generated from the syntax for channel declaration. This type

Demux_channels is the concrete instance of the channel alphabet Θ, and get, put,

and finish the only typed channel constructors of the Demux-process. A symbolic

event is obtained by applying the corresponding channel constructor to a HOL term,

thus get(tid,d) or put(tid,d). Labels are then defined either by one symbolic

event or by ε.

States.

In the Circus testing theory[3], the state is represented by an assignment of

symbolic values to all Circus variables in scope. Scoping is handled by variable

introduction and removal and nested scopes are avoided using variable renaming.

Note that we will represent the “symbolic” variables (technically: constants for

which an own substitution theory has to be provided for a mechanization) in “shallow

embedding” style, i. e. directly by the free and bound variables of Isabelle/HOL, i. e.

by its underlying typed λ-calculus. Consequently, all symbolic notions defined in

Ref. [3] are mapped to shallow computations from Isabelle’s point of view, which

opens the way for fast type-checking and fast (built-in) instantiation of rules.

Consequently, the symbolic state can be represented as a symbolic binding

(variable x 7→ HOL term E). Following the representation of bindings by extensible

records, the symbolic state corresponds to a record that maps field names to values

of an arbitrary HOL type. In order to keep track of nested statements, each Circus

variable in the state binds to a stack of values.

Abderrahmane Feliachi, et al.: Symbolic Test-generation in HOL-TestGen/CirTA... 185

Operational semantics rules revisited.

The operational semantics is defined by a set of inductive inference rules over the

transition relation of the form:

C
(s0 |= A0)

e−→ (s1 |= A1)

where (s0 |= A0) and (s1 |= A1) are configurations, e is a label and C is the

applicability condition of the rule. Note that the revised configurations are pairs

where s1 and s2 are symbolic states in the sense above, and the constraints are no

longer kept inside the configuration, but in a side-condition C of the entire

operational rule. This way, we can constrain on the HOL-side these symbolic states.

A lot of explicit symbolic manipulations (e.g. fresh symbolic variable introduction)

are built-in quantifiers managed directly by prover primitives. Thus, the shallow

representation reduces drastically the complexity of the rules[10].

The entire operational relation is defined inductively in Isabelle covering all Circus

constructs. Isabelle/HOL uses this specification to define the relation as least fixed-

point on the lattice of powersets (according to Knaster-Tarski). From this definition

the prover derives three kinds of rules:

– the introduction rules of the operational semantics used in the inductive

definition of the transition relation,

– the inversion of the introduction rules expressed as a huge case-splitting rule

covering all the cases, and

– an induction principle over the inductive definition of the transition relation.

2.4 Wrapping up: The CirTA system architecture

Isabelle/HOL itself forms the theoretic and technical environment for CirTA

(similar to HOL-TestGen [1]), a proof and symbolic execution environment for

Circus specifications. We therefore profit from the generic Isabelle system facilities

such as document or code generation as well as libraries, proofs, and

proof-procedures.

In particular, we profit from the possibility to reuse the powerful underlying

symbolic computing API’s of Isabelle to implement our test generation procedures in

a logically safe way.

The CirTA system is composed of three main components, organized in four

different layers.

1. The Isabelle/Circus framework, an Isabelle/HOL library that defines the UTP

basis and the Circus operators in terms of a denotational semantics. This also

comprises first-class syntactic support for the definition of concrete Circus

processes in applications, see subsection 2.5.

2. A collection of libraries defining the operational semantics.

3. The testing theories of Circus, introducing notions for symbolic traces, their

configuration and transformation; This layer is discussed in more detail in the

next section.

186 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

4. The top-most layer, the test-generation engine is built by different symbolic

test-generation procedures implemented as Isabelle tactics.
Both basic layers consist of theory developments based on definitional axioms

and derived rules.1

2.5 Example: The demultiplexer in CirTA

We introduce in the following a Circus specification (a slight abstraction) of the

multiplexer module studied in this paper, given in the syntax of Isabelle/Circus. Note

that the Z-notation used to specify general state-transitions is parsed away directly

into HOL, so Z schemas of the form [a : T1, b : T2 | P a b] are directly parsed to sets

of records {(| a::T1, b::T2|). P a b}, and operation schemas [∆σ | Q a b a ′ b′] are

just transition relations: {(σ, σ’). Q (σ a) (σ b) (σ ’ a) (σ ’ b)}.

circusprocess Demux =

alphabet = [x::thread-id×data, y::thread-id×data]

state = [queue::(thread-id×data) list, active::(thread-id×data) set]

channel = [get thread-id×data, put thread-id×data,

finish thread-id×data]

schema InitQueue = queue’ = [] ∧active’ = {}

schema EnQueuePacket = queue’ := queue@[x]

schema Choose = (∃ (tid,_)∈set queue. tid /∈fst ‘active) ∧
y := hd (filter (λ(tid,_).∀ (tid’,_)∈active. tid ̸=tid’) queue)

schema Activate = active’ = active ∪{y}
schema Remove = active’ := active - {x}

action Put = put?x →(Schema EnQueuePacket)

action Get = (fst‘(set queue)) - (fst‘active)) ̸={})

& ((Schema Choose); get!y)

action Finish = finish?x∈active →(Schema Remove)

where (Schema InitQueue); µX ·(Put � Get � Finish; X)

where thread-id and data are enumerable infinite types (thus fixed by nat in

our test-generation phase).

A Circus - process can have a collection of channels (as in CSP) along which

a typed event-alphabet that can be communicated. A process can have a global

state, in our case a queue of data, and a set of active communications. Note that

unbounded queues are difficult, in general impossible to handle in model-checkers such

as FDR. The declaration part of a Circus process consists of schema-declations, action

declarations and a process initialization. A particular Circus feature are schema-

declarations; they allow for silent transitions over the process that can be modeled

in a fully declarative way (in contrast to CSP). These transitions were described by

Z schemata (thus arbitrary predicates over the pair of pre and post state). Actions

are processes, which can contain communications (an event communicated along a

channel) or references to schemata. Note that Circus binding conventions for variables

(inspired by Z) make that the x in, e.g., EnqueuePacket, refers to the same value

as the communicated one in put?x in action Put, where EnQueuePacket is used in

the same scope. As in CSP, predicates can be used to restrict the set of possible

communications.

1CirTA is available at www.lri.fr/~wolff/tmp/cirta.gz. Major components are also published in

the Archive of Formal Proofs AFP, 2012-05-27:Isabelle/Circus.

Abderrahmane Feliachi, et al.: Symbolic Test-generation in HOL-TestGen/CirTA... 187

3 Revisiting the Circus Testing Theories

The embedding of the testing theories of Circus essentially depends on its

operational semantics as discussed in subsection 2.3. It is the main instrument to

decompose Circus processes and construct symbolic traces, i. e. traces containing

terms with free variables which are restricted by symbolic constraints accumulated

during composition. Instead of a randomly choosing values for variables, or

model-check constraints interpreted over finite (and small) models, these constraints

can be normalized and solved by constraint-solvers such as Z3 directly before (or

even in the case of online-testing: during) the test-execution phase rather during

modeling or test-case generation.

3.1 Testing theories

Formal testing theories for languages like CSP or Circus are based on the

testability assumption, that both the Model SPEC and the system under test SUT

are processes, where the latter is in a kind of refinement relation to the former

like[21]:

SPEC ⊑FD SUT

it is this refinement relation which can be checked, for example, by model-checkers

such as FDR.

Now, model-based testing is based on two fundamental assumptions which

motivate to speak rather of conformance than of refinement: First, the structure of

the SUT is unknown or “black-box”; we only reveal the behaviour of SUT by

combining it with a tester that feeds it with more or less pre-computed test-stimuli.

Second, refinement notions are based on the comparison of infinite sets of traces and

refusals, wheras a test must necessarily be based on a finite set of stimuli and

observations, which can be, however, chosen to meet certain coverage criteria over

SPEC.

Testing from Circus specifications is defined for two conformance relations: traces

inclusion “SPECconfT SUT” and deadlocks reduction “SPECconfD SUT”.

The former is based on the idea “all traces in SUT should be possible in SPEC”,

the latter follows the goal “whenever SPEC refuses an input in after a trace t , SUT

should do so as well”.

In the following, we develop the test-derivation strategy for both conformance

notions. As a pre-requisite, we need the notion of symbolic traces or cstraces.

Symbolic traces definition.

Let cstraces(P) the set of constrained symbolic traces of the process P . A cstrace

is a list of symbolic events associated with a constraint defined as a predicate over the

symbolic variables of the trace. Events are given by the labels, different from ε, of

the operational semantics transitions. Let us consider the relation noted “=⇒” given

by:

cf1
[]

=⇒ cf1

cf1
ε−→ cf2 cf2

st
=⇒ cf3

cf1
st
=⇒ cf3

cf1
e−→ cf2 cf2

st
=⇒ cf3 e ̸= ε

cf1
e#st
=⇒ cf3

(*)

188 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

where cf1, cf2 and cf3 are configurations.

The cstraces set definition is given in Ref. [3] using the relation (*) as follows:

Definition 1. for a given process P , an initial constraint c0, an initial state

s0

cstracesa(c0, s0,P) =

{(st , ∃(αc \ αst) • c) | s P1 • αst 6 a ∧ (c0 | s0 |= P)
st
=⇒ (c | s |= P1)}

cstracesa(begin state[x : T]P • end) = cstracesa(w0 ∈ T , x := w0,P)

One can read: the constrained symbolic traces of a given configuration are the

constrained symbolic traces that can be reached using the operational semantics rules

starting from this configuration.

The shallow symbolic representation of this definition is simpler since the

symbolic alphabet a is not addressed explicitly. It is also the case for the symbolic

constraint because it is described by the characteristic predicate of the set of these

traces. Therefore, the cstraces set is defined in our theory as follows:

Definition 2.

cstraces P = {st. ∃ s P1. (s0 |=P) =st⇒ (s |=P1)}

Since the operational semantics rules contain premises that ensure the validity

of the target constraint, the trace constraint is embedded in the set predicate: in our

formalization, a constrained symbolic trace is seen as a concrete trace, i. e. a trace

with symbolic HOL variables, restricted by rules premises. Thus, the constraint of a

constrained symbolic trace can be retrieved using set membership.

3.2 Test-generation for traces inclusion

The first studied conformance relation for Circus-based testing corresponds to

the traces-inclusion refinement relation. This relation states that all the traces of the

System Under Test (SUT) belong to the traces set of the specification, or in other

words, the SUT should not engage in traces that are not traces of the specification.

As seen previously, a forbidden cstrace is defined by a prefix which is a valid

cstrace of the specification followed by a forbidden symbolic event (continuation).

The set of forbidden continuations is called csinitials, the set of valid continuations

is csinitials. Because of the constrained symbolic nature of the cstraces and events,

csinitials is not exactly the complement of csinitials.

csinitials definition.

csinitials is the set of constrained symbolic events a system may perform after

a given trace. It is defined in Ref. [3] as follows:

Definition 3. For every (st , c) ∈ cstracesa(P)

csinitialsa(P , (st , c)) =

{(se, c ∧ c1) | (st@[se], c1) ∈ cstracesa(P) ∧ (∃ a • c ∧ c1)}

Symbolic initials after a given constrained symbolic trace are symbolic events

that, concatenated to this trace, yield valid constrained symbolic traces. Only events

whose constraints are compatible with the trace constraint are considered.

Abderrahmane Feliachi, et al.: Symbolic Test-generation in HOL-TestGen/CirTA... 189

We introduce the shallow symbolic representation of this definition as follows:

Definition 4.

csinitials (P, tr) = {e. tr@[e] ∈ cstraces (P)}

All explicit symbolic manipulations are removed, since they are implicitly handled

by the prover. The constraint of the trace is not considered, since at this level tr is

considered as a single concrete trace.

csinitials definition.

In order to generate tests for the traces inclusion relation, we need to introduce

the definition of csinitials. This set contains the constrained symbolic events the

system must refuse to perform after a given trace. These elements are used to lead

the SUT to execute a prohibited trace, and to detect an error if the SUT does so.

Definition 5. for every (st , c) ∈ cstracesa(P)

csinitials
a
(P , (st , c)) ={

(d .α0, c1) |

(
α0 = a(#st + 1) ∧
c1 = c ∧ ¬

∨
{c2 | (d .α0, c2) ∈ csinitialsa(P , (st , c))}

)}

The csinitials set is built from the csinitials set: if an event is not in csinitials it

is added to csinitials, constrained with the constraint of the trace. If the event is in

csinitials it is added with the negation of its constraint. The new symbolic variable

α0 is defined as a fresh variable in the alphabet a, the next after the symbolic variables

used in the symbolic trace st .

In our theories, the symbolic execution is carried out by the symbolic

computations of the prover. Consequently, all explicit symbolic constructs are

removed in the representation of csinitials. This representation is introduced as

follows:

Definition 6.

csinitialsb (P,tr) = {e. ¬Sup {e ∈csinitials(P,tr)}}

where the Sup operator is the supremum of the lattice of booleans which is predefined

in the HOL library, i. e. generalized set union. No constraint is associated to the

trace tr because it is globally constrained in the context. Symbolic csinitials are

represented by sets of events where the constraint can be retrieved by negating set

membership over the csinitials set.

3.3 Test-generation for deadlocks reduction

The deadlocks reduction conformance relation, also known as conf, states that all

the deadlocks must be specified. Testing this conformance relation aims at verifying

that all specified deadlock-free situations are dead-lock free in the SUT. A deadlock-

free situation is defined by a cstrace followed by the choice among a set of events the

system must not refuse, i. e. if the SUT is waiting for an interaction after performing

a specified trace, it must accept to perform at least one element of the proposed

csacceptances set of this trace.

190 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

Definition of csacceptances.

In order to distinguish input symbolic events from output symbolic events in the

symbolic acceptance sets, the set IOcsinitials is defined. This set contains, for a given

configuration, the constrained symbolic initials where input and output information

is recorded. Since inputs and outputs are considered separately in the labels of the

transition relation, the set of IOcsinitials is easy to define. It contains the set of labels

(different from ε) of all possible transitions of a given configuration.

Definition 7. for a given process P1

IOcsinitialsast(c1, s1,P1) ={
(l , ∃(αc2 \ (α(st@[l]))) • c2) | s2, P2 •

(c1 | s1 |= P1)
l−→ (c2 | s2 |= P2) ∧ l ̸= ε ∧ α(st@[l]) 6 a

}

A symbolic acceptance set after a given trace must contain at least one symbolic

event from each IOcsinitials set obtained from a stable configuration after this trace.

In our representation of this definition the alphabets a and α(st) are not addressed

explicitly, and the constraint is defined as the set predicate.

Definition 8.

IOcsinitials cf = {e. ∃ cf’. cf -e→ cf’ ∧e ̸=ε}

The general definition of csacceptances was introduced in Ref. [3] as follows:

Definition 9. for every (st , c) ∈ cstracesa(P1) we define

csacceptancesa(c1, s1,P1, (st , c)) =SX |

∀ c2, s2,P2 •

(
(c1 | s1 |= P1)

st
=⇒ (c2 | s2 |= P2) ∧

(∃ a • c2 ∧ c) ∧ stable(c2 | s2 |= P2)

)
•

∃ iose ∈ SX • iose ∈ IOcsinitialsast(c2, s2,P2) �a c

where

stable(c1 | s1 |= P1) = ¬ ∃ c2, s2,P2 • (c1 | s1 |= P1)
ε−→ (c2 | s2 |= P2)

S �a c = {(se, c ∧ c1) | (se, c1) ∈ S ∧ (∃ a • c ∧ c1)}

The csacceptances are computed using the IOcsinitials after a given stable

configuration of the specification. A configuration is stable if no internal silent

evolution is possible directly for its action. Only IOcsinitials whose constraints are

compatible with the constraint of the tested trace are considered. A filter function �
is introduced in order to remove unfeasible initials.

The csacceptances set defined above is infinite and contains redundant elements

since any superset of a set in csacceptances is also in csacceptances. A minimal

symbolic acceptances set csacceptancesmin can be defined to avoid this problem. The

csacceptancesmin set after a given cstrace must contain exactly one element from each

IOcsinitials set. Unlike csacceptances, the csacceptancesmin contain only elements

that are possible IOcsinitials. It is defined as follows:

Definition 10.

csacceptances_min tr s A =

cart (
∪
{SX. ∃ t∈(after_trace tr s A). SX ∈IOcsinitials t})

Abderrahmane Feliachi, et al.: Symbolic Test-generation in HOL-TestGen/CirTA... 191

where after_trace is defined by:

after_trace tr s A = {t. (s |=A) =tr⇒A t ∧stable t}

and cart operator defined below is a generalized Cartesian product whose elements

are sets, rather than tuples. It takes a set of sets SX as argument, and defines also a

set of sets, characterized as follows:

cart SX = {s1. (∀ s2∈SX. s2 ̸={} −→(∃ e. s2 ∩s1 = {e}))

∧ (∀ e∈s1. ∃ s2∈SX. e∈s2)}
The resulting csacceptancesmin of this definition is minimal (not redundant), but

can still be infinite. This can come from some unbound internal nondeterminism in

the specification that leads to infinite possibilities. In this case, the set cannot be

restricted and all elements must be considered.

Each element of the resulting csacceptancesmin set is a set of symbolic events. A

symbolic acceptance event is represented as a set of concrete events. The instantiation

of these sets is done using the membership operator.

3.4 The concepts in terms of our running example

We will demonstrate the key-concepts

– traces inclusion (“in which traces should the SUT at least engage?”), and

– deadlocks reduction (“in which traces should the SUT at most engage?”).

in terms of our running Multiplexer example shown in subsection 2.5.

An example of a constrained symbolic trace in terms of the Multiplexer and a

constrained symbolic event after this trace is given by:

([put(tid1, d1), put(tid2, d3), put(tid1, d5), get(c)],

tid1 = tid(c) ∧ pktno(d5) > pktno(d1))

Note that we adopt the convention that for HOL-constants like put we use

typewriter font (the channels in our Circus specification were compiled to a

data-type) while for HOL-variables like tid1 we use an italic font.

Furthermore, note that we are interested in the implicit ”Queue”-property in this

symbolic traces in our case study, since they represent a safety-critical property in

our case-study: the order of sent messages should never be switched. The schema

operations ensure this order in the specification, thus, the generated tests will cover

situations in which the order is not preserved.

traces inclusion refers to inclusion of trace sets: process P2 is a traces inclusion

of process P1 if and only if the set of traces of P2 is included in that of P1. Symbolic

tests for traces inclusion are based on some cstrace cst of the Circus process P used to

build the tests, followed by a forbidden symbolic continuation, namely a csevent cse

belonging to the set csinitials associated with cst in P . An example of a symbolic

test for traces inclusion is given by:

([put(tid1, a), put(tid1, b), get(c)], tid(c) ̸= tid1 ∨ data(c) ̸= a)

deadlocks reduction (also called conf in the literature) requires that deadlocks of

process P2 are deadlocks of process P1. The definition of symbolic tests for deadlocks

reduction is based on a cstrace cst followed by a choice over a set SX , which is a

192 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

symbolic acceptance of cst . Such a test passes if its parallel execution with the SUT

is completed and fails if it blocks before the last choice of events. Here is an example

of a test for a deadlocks reduction test-trace:

([put(a), put(b), get(c)], c = a) {put(d), get(b), finish(c)}

In Ref. [10], we presented a formalization of all these notions in Isabelle/Circus.

This formalization represents the second layer of the CirTA system, and it is the basis

of the test generation tactics defined in the top-most (and novel) layer.

The CirTA Test-generation engine

Starting from a Circus specification, the role of the test-generation engine is to

derive traces and tests for each conformance relation. It defines some general tactics

for generating, cstraces and tests for the two conformance relations introduced earlier.

Trace Generation.

Test definitions are introduced as test specifications that will be used for test-

generation. For trace generation a proof goal is stated to define the traces a given

system may perform. This statement is given by the following rule, for a given process

P :
length(tr) 6 k tr ∈ cstraces(P)

Prog(tr)
(1)

where k is a constant used to bound the length of the generated traces.

While in a conventional automated proof, a tactic is used to refine an intermediate

step (a “subgoal”) to more elementary ones until they eventually get “true”, in prover-

based testing this process is stopped when the subgoal reaches some normal form of

clauses, in our case, when we reach logical formulas of the form: C =⇒ Prog(tr),

where C is a constraint on the generated trace. Note that different simplification

rules are applied on the premises until no further simplification is possible. The final

step of the generation produces a list of propositions, describing the generated traces

stored by the free variable Prog .

The test specification 1 is introduced as a proof goal in the proof configuration. The

premise of this proof goal is first simplified using the definition of cstraces. The

application of the trace generation tactic on this proof goal generates the possible

continuations in different subgoals. The elimination rules of the operational semantics

are applied to these subgoals in order to instantiate the trace elements. Infeasible

traces correspond to subgoals whose premises are false; Isabelle’s decision procedures

will to a large extent close these subgoals automatically, (the remaining cases were

proven infeasible by user interaction).

Recursive process specifications may imply traces of unbounded length and thus

an unbounded number of symbolic traces. The generation is then limited by a given

trace length k , defined as a parameter of the generation process. The list of subgoals

corresponds to all possible traces of length smaller than this limit.

The trace generation process is implemented in Isabelle as a tactic. The trace

generation tactic can be seen as an inference engine that operates with the derived

rules of the operational semantics and the trace composition relation.

Abderrahmane Feliachi, et al.: Symbolic Test-generation in HOL-TestGen/CirTA... 193

Test-generation for Traces Inclusion.

The generation of csinitials is done using a similar tactic as for cstraces. In

order to capture the set of all possible csinitials, the test theorem is defined in this

case by:
S = csinitials(P , tr)

Prog S
(2)

the free variable Prog records the set S of all csinitials of P after the trace tr .

The generation of tests for traces inclusion is done in two stages. First, the trace

generation tactic is invoked to generate the symbolic traces. For each generated trace,

the set of the possible csinitials after this trace is generated using the corresponding

generation tactic. Transforming this set, the feasible csinitials were generated and

booked as new subgoal into the final generation state.

Test-generation for deadlocks reduction.

Test-generation in this case is based on the generation of the csacceptancesmin

set. For a given symbolic trace generated from the specification, the generation of

the sets of csacceptancesmin is performed in three steps. First, all possible stable

configurations that can be reached by following the given trace are generated. In the

second step, all possible IOcsinitials are generated for each configuration obtained

in the first step. Finally, the csacceptancesmin set is computed from all resulting

IOcsinitials. The different generation tactics are explained in detail in Ref. [10].

4 The Application: A Message Demultiplexer in a Medical Home-

Monitoring System

Our case study addresses a part of a remote monitoring system used in a

worldwide health-care network, where a variety of devices — most notably

pacemaker controllers — where connected via a network. The automatic monitoring

system keeps track of the status of all connected devices that regularly send

diagnostic, therapeutic, and technical data on the current clinical status of the

patients.

The monitoring system collects a very large number of message-packets then

recollects them to messages transferred to their corresponding “workers” in order to

be processed. The demultiplexer is implemented by highly complex, highly efficient

concurrent Java-code, and a key security property became a major concern: in each

communication thread (which are actually prioritized, so the demultiplexer can choose

higher-prior get’s to lower-prior ones), the FIFO property of message packets must

be respected in any circumstance.

An overview of the remote monitoring system is given in Fig. 2.

Figure 2. Remote monitoring system overview

The remote monitoring system is composed essentially of a queue module and a

set of processing services. The different message manipulations and routing

194 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

operations are carried out by the queue module. Each message consists of a number

of elementary packages (characterized with a device identifier) and its actual

content. The queue receives and stores messages, and then forwards them to an

assigned processing (“worker”) service. A crucial safety property of this

arrangement is that the packet order between packets belonging to the same

message is maintained and that no confusion between packets belonging to different

messages arises. The main operations of the implementation that can be performed

by the multiplexer are:

– PUT: The queue receives the messages using the PUT operation and stores

them with the new status. Messages are ordered following their reception.

– GET: The processing services can retrieve new messages from the queue and

mark them as active. The queue decides which message it provides to the

processing service according to two conditions. First, the message must be the

oldest available message in the queue. Second, there is no active message with

the same identifier as the returned message.

– FINISH: When a processing service successfully completes a message processing,

this active message is completely removed from the queue.

The reader will notice the direct match to the interface of our queue in subsection

2.5, where the Circus specification represents the abstract test model from which the

concrete implementation (consisting of several thousands of dense concurrent Java-

code) is tested.

The device identifiers are associated to the message to indicate their sources.

Two messages sent from the same device should not be processed simultaneously,

the processing order follows the sending order. This order is important since the

processing of the later message may depend on the results of the processing of the

first one.

5 Testing in CirTA

The testing procedure is very similar to the standard HOL-TestGen procedure

described in Ref. [1] — albeit now generating tests for Circus processes rather than

just data-types. First, a combined HOL and Circus formula representing the test

specification must be introduced describing the test goal. Inference rules are then

used to derive tests from this specification following some predefined tactics. Finally,

testers are generated from the resulting tests and executed against the SUT.

5.1 Test-specification

The test specifications are defined using a specification of the SUT. For this,

we provide an abstract Circus specification of the queue module. For the sake of

simplicity, we consider message identifiers and contents as natural numbers.

For trace generation, a test specification is stated as a proof goal describing the

traces to generate. This test specification, is given by the following formula:

tr ∈cstraces Demux =⇒ prog tr

where cstraces defines the set of traces and prog is a free variable used to store the

generated traces.

Abderrahmane Feliachi, et al.: Symbolic Test-generation in HOL-TestGen/CirTA... 195

For each generated trace, different tests are generated to test the trace inclusion

relation. A test specification is stated as a proof goal in order to start the generation.

The complete test specification is given as follows:

tr ∈cstraces Demux ∧e ∈csinitialsb Demux tr =⇒prog tr@[e]

where csinitialsb defines the set of csinitials.

Similarly, each generated trace is used to generate the corresponding tests w.r.t.

the deadlock reduction conformance relation. The test specification corresponding to

all the possible traces is given as follows:

tr ∈cstraces Demux ∧e ∈csacceptances Demux tr =⇒ prog tr e

where csacceptances is the set of acceptances of after tr.

5.2 Test-generation experiments

The test generation for the Queue process is done in two steps. First, all

possible traces (up to a given length) are generated. Then, for each generated trace,

two test sets are generated, one for trace inclusion and one for deadlock reduction.

The symbolic generated tests are then transformed into instantiated tests via some

HOL-TestGen’s method called gen_test_data, and then into executable tests that

will be exercised against the system (see Subsection 5.3).

Trace generation.

The generic trace generation tactic is defined using the operational semantics

rules applied along with the system simplifier. The constraints associated to the

generated tests define the domain of the symbolic tests. These constraints, in our case,

can become very complex due to the non-determinism at the level of the retrieved

message. A constraint defined by a disjunction of two constraints defines a union

of two subdomains. Some DNF decomposition[7] can be used to split this kind of

domains into two distinct domains. This significantly increases the number of the

generated traces, however, it reduces drastically the complexity of the constraints.

The trace generation tactic is invoked using different trace lengths. A first

(expected) drawback of the generic trace generation tactic is the lack of efficiency:

the generation time grows exponentially w.r.t. the trace length. For a length of 4,

the generation takes more than 20 seconds against a maximum of 5 seconds for

shorter traces. For traces of length 5, the generation time is around 5 minutes.

This is due to the heavy machinery used for trace generation and also to the

multiple silent transitions of the operational semantics. A characteristic of our

specification is that, after the initialization, it behaves in a recursive way. We can

take advantage of this characteristic to improve the trace generation efficiency by

factorizing the generations steps. During one recursion, different silent transitions

are performed, in addition to one communication transition. All these transitions

can be factorized in a one-step transition that covers the silent and the

communication transitions. A specific rule for this transition called OneStep was

proved from the operational semantics.

Using the OneStep rule, the overall generation time is reduced. For a length of

5 for example, the trace generation takes less than 2.5 seconds and for 6 less than 8

seconds. A list of all the performed experiments is given in Section 6.

196 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

We were led to limit the length of generated traces to 7 and thus the generated

tests will have a maximum length of 8. This limit is chosen only for practical reasons,

due to the current number of cases: the number of generated traces using this limit

is around 300. Thus the whole test generation tactics takes an important execution

time. This number is important due to the fact that we generate exhaustively. In

the near future, we plan to consider more restrictive selection hypothesis in order to

focus on interesting and longer selected tests.
Examples of generated traces are the following:∧

a b c d e f. prog [put (a, b), put (c, d), put (e, f), get (a, b)]∧
a b c d. prog [put (a, b), put (c, d), get (a, b), finish (a, b)]

As said above, for practical reasons the length limit considered for the moment is

7. A regularity hypothesis is stated on the length of traces. This regularity hypothesis

is given as follows:

THYP ((length tr ≤ 7 −→ prog tr) −→ (∀ tr. prog tr))

Test generation for trace inclusion.

The trace generation tactic instantiates the variable tr of this test specification to

all the possible traces. This results into different test specifications each associated to

a different trace. The initials generation tactic is used to generate the corresponding

initials for each test specification. This generation is done in parallel for all test

specifications resulting from the trace generation step.

The tests are then retrieved by unfolding the definition of csinitialsb in the test

specification, then simplifying the resulting proof goal. Like for traces, the generation

of initials is also slow when using the operational rules directly. A factorized version

of the initials generation rules was also derived and proved.

As an example, let us consider the trace [put (a, b), put (aa, ba)]. This

trace is used to illustrate the test generation tactic and its results. The test

specification corresponding to this trace is given in the following:∧
a b c d. e ∈ csinitialsb Demux [put(a,b),put(c,d)]

=⇒ prog [put(a,b),put(c,d),e]

The result of the test generation tactic is the list of the possible tests, defined by the

trace and a non-initial element. In this case, three different tests are generated, each

one associated to a constraint (af ̸= a and bf ̸= b).∧
a b c d e f. e ̸=a =⇒ prog [put (a, b), put (c, d), get (e, f)]∧
a b c d e f. f ̸=b =⇒ prog [put (a, b), put (c, d), get (e, f)]∧
a b c d e f. prog [put (a, b), put (c, d), finish (e, f)]

These tests are represented in a symbolic way, using symbolic HOL variables (e.g.

a, b, ba ...). To obtain concrete finite tests, some selection hypotheses must be

stated on the symbolic tests. We reused in this step the gen_test_cases method of

the HOL-TestGen system. This method makes more simplifications on the current

symbolic tests. It applies also a uniformity hypothesis on the simplified symbolic

tests and returns schematic tests. Schematic values are represented by schematic

variables (e.g. ?X32X18) which are also constrained. These schematic variables can

be instantiated by any values satisfying the constraints. The resulting schematic tests

are presented as follows:

Abderrahmane Feliachi, et al.: Symbolic Test-generation in HOL-TestGen/CirTA... 197

?X32X18 ̸= ?X44X30 =⇒ prog [put (?X44X30, ?X43X29),

put (?X42X28, ?X41X27), get (?X32X18, ?X31X17)]

?X16X17 ̸= ?X28X29 =⇒ prog [put (?X29X30, ?X28X29),

put (?X27X28, ?X26X27), get (?X17X18, ?X16X17)]

prog [put (?X14X29, ?X13X28), put (?X12X27, ?X11X26),

finish (?X2X17, ?X1X16)]

In addition to the schematic tests, a uniformity hypothesis, is stated for each test.

The uniformity covers all the symbolic variables of the symbolic test, so only one

hypothesis is obtained by symbolic test. An example of a uniformity hypothesis for

the first case is:

THYP ((∃ x xa xb xc xd xe. xa ̸=xe ∧
prog [put (xe, xd), put (xc, xb), get (xa, x)]) −→
(∀ x xa xb xc xd xe. xa ̸=xe −→
prog [put (xe, xd), put (xc, xb), get (xa, x)]))

In order to be executed, the schematic tests must be instantiated with concrete values.

For this, a HOL-TestGen’s method called gen_test_data is directly used. This

method uses smt solvers (e.g. Z3) to instantiate concrete values for the schematic

variables. The resulting tests of our example are:

prog [put (3, 1), put (0, 0), get (0, 1)]

prog [put (0, 0), put (3, 1), get (3, 2)]

prog [put (1, 2), put (1, 6), finish (0, 1)]

Test generation for deadlock reduction.

The trace generation tactic is used to generate all the possible traces of a given

length. The acceptances generation tactic is then applied automatically to all the

generated traces. In order to increase the efficiency of the test generation, we

introduce some parallelization: each test specification, associated to one possible

trace, is treated separately. The test-generation is then performed in parallel to all

these test specifications.

5.3 Testers and test-code

The queue is implemented in Java and integrated to the whole remote monitoring

system. In order to test this implementation, JUnit testing facilities are used for

test execution. Starting from the queue specification, tests are generated and then

translated into JUnit tests. The resulting tests are then directly executed on the given

implementation.

In order to execute the concrete tests against the provided Java implementation

of the queue, these tests must be expressed in terms of JUnit test methods. Each

event of the trace is translated to a call to the corresponding method in the

implementation. The execution is then done directly in the Eclipse platform using

JUnit testing facilities.

Trace inclusion.

For the first conformance relation, the concrete tests generated previously are

automatically translated into Java methods. This translation is done using a new

198 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

method called export_test_file that we developed for this purpose. The translation

(ML) method implements some translation rules for each event of the concrete tests.

For the trace events, the translation is straightforward, put and finish events

are translated directly to the corresponding methods. The get event is translated into

a call to the corresponding method, followed by a check of the resulting value. The

call of these methods may fail. This is detected by an exception or by a wrong result

returned by get. If the call fails at this stage, the test is considered inconclusive.

The last event is treated differently, because it is supposed to fail. The put and

finish should throw an exception. The get event is translated as in the case of trace

events, but the check of the resulting value is inverted. A test succeeds if one of the

methods throws an exception or if the result of the get method corresponds to the

incorrect value described in the test.

The first test presented previously, produce the following JUnit method:

1 pub l i c void testqueue1_1 () throws Exception {
2 AbstractQueueableObject o_3_1 = new NamedEntry (” t op i c ” , 3 , 1) ;
3 AbstractQueueableObject o_0_0 = new NamedEntry (” t op i c ” , 0 , 0) ;
4 AbstractQueueableObject o_0_1 = new NamedEntry (” t op i c ” , 0 , 1) ;
5 AbstractQueueableObject o = nu l l ;
6 tm . begin () ;
7 t ry { queueManager . put (o_3_1) ; tm . commit () ; }
8 catch (Exception e) { System . out . println (” i n c on c l u s i v e ”) ; re turn ;}
9 try { queueManager . put (o_0_0) ; tm . commit () ; }

10 catch (Exception e) { System . out . println (” i n c on c l u s i v e ”) ; re turn ;}
11 o = queueManager . get (NamedEntry . c l a s s , ” t op i c ”) ;
12 assertFalse (equals (o_0_1 , o)) ;
13 }

Deadlock reduction.

The generated tests for the second conformance relation are also automatically

translated into Java methods. The translation rules are the same for the

(sub)traces, by transforming each event into the corresponding method. For the

acceptances set, the translation is more tricky. Since our acceptances sets are finite,

the concrete acceptances can be enumerated and translated to produce the following

behavior: First, the queue state is saved using a commit operation. Then for the

first acceptance event, the corresponding method is called. If the call fails, the

queue state is retrieved using the rollback operation and the execution continues

with the remaining acceptances. As soon as a call is successfully performed, the test

passes. If all the acceptances fail then the test fails as well.

In the special case of infinite acceptances sets, the translation will be slightly

different. The instantiation is not possible at the generation step, an on-line testing

scenario is more convenient. The symbolic test must be translated directly to the

corresponding method call. The obtained input is used to check if the constraint

associated to this test is satisfied.

The concrete test generated previously produces the following test method:

1 pub l i c void testqueue1_1 () throws Exception {
2 AbstractQueueableObject o_1_1 = new NamedEntry (” t op i c ” , 1 , 1) ;
3 AbstractQueueableObject o_10_5 = new NamedEntry (” top i c ” , 10 , 5) ;
4 AbstractQueueableObject o_0_2 = new NamedEntry (” t op i c ” , 0 , 2) ;
5 AbstractQueueableObject o = nu l l ;
6 tm . begin () ;
7 t ry { queueManager . put (o_1_1) ; tm . commit () ; }
8 catch (Exception e) { System . out . println (” i n c on c l u s i v e ”) ; re turn ;}
9 try { queueManager . put (o_10_5) ; tm . commit () ; }

Abderrahmane Feliachi, et al.: Symbolic Test-generation in HOL-TestGen/CirTA... 199

10 catch (Exception e) { System . out . println (” i n c on c l u s i v e ”) ; re turn ;}
11 try { o = queueManager . get (NamedEntry . c l a s s , ” t op i c ”) ; tm . commit () ; }
12 catch (Exception e)
13 { tm . rollback () ; queueManager . put (o_0_2) ; tm . commit () ; }
14 i f (o == nu l l | | ! equals (o_1_1 , o)) {
15 tm . rollback () ; queueManager . put (o_0_2) ; tm . commit () ;
16 }
17 }

6 Test Evaluation

Just at the beginning: a warning. Figures referring to the number of symbolic

states were often compared to non-symbolic approaches, where blind enumeration

of data leads to state systems with billions and trillions of states; it is a desired

feature that the number of states in symbolic approaches is relatively small, and not

a conclusive proof that the approach “does not scale”.2 Note, furthermore, that some

of our symbolic states use formulas of HOL.

The following experiments used Isabelle2013 running on a computer working on

Windows 7. The computer has an 8-core processor (Intel i7 2600) and 6 GB of RAM.

Different experiments are realized by varying the trace length of the tests from 0 to

8. The number of tests and the generation time corresponding to each length for the

trace inclusion relation are summarized in Table 1.

Table 1 Statistics of test generation for trace inclusion

Trace length
Traces Symbolic Tests Schematic Tests Instantiation

time (s) / number time (s) / number time (s) time (s)

0 0 / 1 0.02 / 2 0.02 0.01

1 0.2 / 2 0.02 / 5 0.02 0.01

2 0.2 / 4 0.03 / 11 0.05 0.01

3 0.4 / 8 0.07 / 30 0.1 0.03

4 0.9 / 17 0.19 / 83 0.5 0.2

5 2.5 / 41 1 / 262 2.2 2.6

6 8 / 106 19 / 1039 15 65

7 42 / 297 134 / 4396 351 3000

8 600 / 904 104 / 22647 - -

The generation time and the number of generated tests grow exponentially

w.r.t. the trace length. For traces of length 8, the system limits are reached, due to

the important number of symbolic tests. In order to generate longer tests, one can

introduce more specific selection hypotheses. This will produce less but more

focused tests.

The exhaustive test generation for length at most 8 produced a total of 4396 tests

using the 297 traces of length up to 7. All the generated tests are concrete, where

all communicated values are instantiated. As explained before, all these tests are

compiled into Java test methods that are executed using JUnit. The test execution

time is negligible w.r.t. the test generation time (less than 10 seconds).

2For example, a symbolic automata that accepts correct UTF-8 encodings can be done with 7(!)

symbolic states, while corresponding automatas have 21024 states.

200 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

The same experiments are done for the deadlock reduction conformance relation.

The statistics are summarized in Table 2.

Table 2 Statistics of test generation for deadlocks reduction

Trace length
Traces Symbolic Tests Schematic Tests Instantiation

time (s) / number time (s) / number time (s) time (s)

0 0 / 1 0.03 / 1 0.02 0.01

1 0.2 / 2 0.03 / 2 0.02 0.01

2 0.2 / 4 0.04 / 4 0.02 0.03

3 0.4 / 8 0.06 / 10 0.04 0.05

4 0.9 / 17 0.5 / 30 0.26 0.1

5 2.5 / 41 2/112 0.9 0.6

6 8 / 106 5 / 496 5.8 15

7 42 / 297 97 / 2473 194 670

8 600 / 904 2100 /13918 - -

The exhaustive test generation produces not less than 2473 test methods from all

the traces of length smaller than 7. As for trace inclusion, all resulting test methods

are collected in a Java test file and executed against the implementation. Comparing

to the first conformance relation, the generation produces less tests in less time.

Test execution.

For the trace-inclusion conformance relation, the execution of the 4396 test

methods ended without finding errors (the error that we detected during the

modeling phase was already corrected in the code that we tested). Since we used a

so-called offline-test-method (test-data is completely computed before the test

execution) and since we did not instrument the operating system scheduler of the

SUT, we ended up with 1024 inconclusive tests, i. e. tests where the concrete test

trace is finally not chosen by the SUT due to non-deterministic scheduling. In the

second case of deadlock reduction relation, no errors and 494 inconclusive tests

resulted from executing the 2473 tests. The component was intensively tested

during the development of the system; thus it is not a surprise that no errors were

detected by our generated tests.

A significant number of tests ended with an inconclusive verdict (1518 from 6869),

which reduces the efficiency of our test. In order to reduce the number of inconclusive

tests, one possible solution is to combine the tests of the two conformance relations.

The structure of the tests will be more complex (tree-shaped) but the number of

resulting tests would be smaller.

In order to make some preliminary evaluation of our generated tests, some basic

mutation testing experiments were performed. One important mutant of the queue is

the one that inverts the order of insertion of the elements. This mutant was detected

only by 1 test, but more than 1840 tests were inconclusive. Different mutations were

also applied, mainly by inverting some conditions. All these mutants were killed by

some tests of the trace inclusion conformance relation. Due to the nature of our

mutations, no errors were detected by the tests for deadlocks reduction. However, the

number of inconclusive tests increased significantly. All these mutation experiments

Abderrahmane Feliachi, et al.: Symbolic Test-generation in HOL-TestGen/CirTA... 201

were performed manually, due to the lack of fully integrated and maintained mutation

testing tools for Java and Junit.

7 Conclusion

Related Work.

Symbolic evaluation and constraint solving are widely used, as well as model

checking or similar techniques. The LOFT tool[17] performed test generation from

algebraic specifications, essentially based on narrowing. TGV[16] performs test

generation from IOLTS (Input Output LTS) and test purposes for the ioco

conformance relation. TGV considers finite transition systems, thus enumerative

techniques are used to deal with finite data types. Some symbolic extension of

TGV, STG has been enriched by constraint solving and abstract interpretation

techniques[5]. The FDR model-checker was used[19] for generating tests from CSP

specifications for a conformance relation similar to ioco. In Spec Explorer[24], the

underlying semantic framework are abstract state machines (ASM) and the

conformance relation is alternating refinement. The ASM framework provides

foundation to deal with arbitrarily complex states, but the symbolic extension,

based on constraint solving, is still experimental. JavaPathFinder[25] has been used

for generating test input from descriptions of method preconditions. The approach

combines model checking, symbolic execution, constraint solving and improves

coverage of complex data structures in Java programs. A strong tool in this line of

white-box test systems using symbolic execution and constraint-solcving is the Pex

tool[22].

Symbolic evaluation and constraint solving are widely used, as well as model

checking or similar techniques. The LOFT tool performed test generation from

algebraic specifications, essentially based on narrowing. TGV[16] performs test

generation from IOLTS (Input Output LTS) and test purposes for the ioco

conformance relation. TGV considers finite transition systems, thus enumerative

techniques are used to deal with finite data types. Some symbolic extension of

TGV, STG has been enriched by constraint solving and abstract interpretation

techniques[5]. The FDR model-checker was used[19] for generating tests from CSP

specifications for a conformance relation similar to ioco. In Spec Explorer[24], the

underlying semantic framework are abstract state machines (ASM) and the

conformance relation is alternating refinement. The ASM framework provides

foundation to deal with arbitrarily complex states, but the symbolic extension,

based on constraint solving, is still experimental. JavaPathFinder[25] has been used

for generating test input from descriptions of method preconditions. The approach

combines model checking, symbolic execution, constraint solving and improves

coverage of complex data structures in Java programs. A strong tool in this line of

white-box test systems using symbolic execution and model-checking is the Pex

tool[22].

In our case, the use of a theorem prover, namely Isabelle/HOL, is motivated

by the fact that test generation from rich specification languages such as Circus can

greatly benefit from the automatic and interactive symbolic computations and proof

technology to define sound and flexible test generation techniques. Actually, this is

202 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

extremely useful and convenient to deal with infinite state spaces. TGV does not

possess symbolic execution techniques and is thus limited to small data models. Our

approach has much in common with STG, however its development was abandoned

since the necessary constraint solving technologies were not available at that time. In

contrast, CirTA uses most recent deduction technology in a framework that guarantees

its seamless integration. On the other hand, Symbolic JavaPathFinder and Pex are

white-box testing tools which are both complementary to our black-box approach.

Summary.

This paper presents a case study of the CirTA test generation environment. A

first case study covers experience on a process-oriented black-box testing method

of a “real” safety-critical component. The system under test (SUT) is a Demux

module, implemented in highly concurrent Java, integrated in a conventional JUnit

testbed who’s test-code has been generated by CirTA. Based on an abstract behavioral

description of the system component in Circus, our environment generates symbolic

traces, then tests for two conformance relations, and finally JUnit Testsuites of offline

testing of the system under test. Some basic mutation analysis was also performed

to evaluate error-detection capacity of the generated tests.

The test generation procedure is an automatic solution for any Circus

specification. However, CirTA is an interactive environment allowing not only to

modify and adapt the specification, but also the test-generation process; in

particular customizations for the simplification or elimination of symbolic test-traces

are possible and in practice necessary for unfeasible constraints that could not be

proven false automatically and for improving the overall efficiency.

The test experiments revealed no errors, which is not a big surprise given that

the system under test is already in use. However, this case study presents a proof of

technology of how our environment can be used for a real system. On the basis of

this environment, it remains to introduce more realistic testing strategies than

exhaustivity. It will be done by introducing stronger problem-adapted test

hypotheses, thus some guidance of the test-generation tactics.

References

[1] Brucker AD, Wolff B. On theorem prover-based testing. Formal Aspects of Computing (FAOC),

2012.

[2] Camilleri AJ. Mechanizing csp trace theory in higher order logic. IEEE Trans. on Software

Engineering , September 1990, 16(9): 993–1004.

[3] Cavalcanti A, Gaudel M-C. Testing for refinement in circus. Acta Informatica, April 2011, 48(2):

97–147.

[4] Church A. A formulation of the simple theory of types. Journal of Symbolic Logic, 5(2):56–68,

June 1940.

[5] Clarke D, Jéron T, Rusu V, Zinovieva E. STG: A symbolic test generation tool. TACAS 2002.

Springer-Verlag, 2002, volume 2280 of LNCS.

[6] Cavalcanti ALC, Woodcock JCP. A tutorial introduction to CSP in unifying theories of

programming. Refinement Techniques in Software Engineering. Springer-Verlag. 2006, volume

3167 of LNCS. 220–268.

[7] Dick J, Faivre A. Automating the generation and sequencing of test cases from model-based

specifications. FME. 1993. 268–284.

[8] De Nicola R, Hennessy M. Testing equivalences for processes. Theor. Comput. Sci., 1984, 34:

83–133.

[9] De Moura L, Bjørner N. Z3: An efficient smt solver. TACAS. Springer-Verlag, 2008. 337–340.

Abderrahmane Feliachi, et al.: Symbolic Test-generation in HOL-TestGen/CirTA... 203

[10] Feliachi A. Semantics-Based Testing for Circus[PhD thesis]. Université Paris-Sud 11, 2012.

[11] Feliachi A, Gaudel M-C, Wolff B. Isabelle/circus: A process specification and verification

environment. VSTTE. 2012. 243–260.

[12] Feliachi A, Gaudel M-C, Wenzel M, Wolff B. The circus testing theory revisited in isabelle/hol.

ICFEM. 2013. 131–147.

[13] Hoare CAR, He J. Unifying theories of programming. Prentice Hall, 1998, volume 14.

[14] Hoare CAR. Communicating Sequential Processes. Prentice-Hall, 1985.

[15] Isobe Y, Roggenbach M. A generic theorem prover of csp refinement. TACAS. 2005. 108–123.

[16] Jard C, Jéron T. TGV: theory, principles and algorithms, a tool for the automatic synthesis of

conformance test cases for non-deterministic reactive systems. STTT. October 2004, 6.

[17] Marre B. Loft: A tool for assisting selection of test data sets from algebraic specifications. Proc.

of the 6th International Joint Conference CAAP/FASE on Theory and Practice of Software

Development, TAPSOFT ’95. London, UK. UK. Springer-Verlag. 1995. 799–800.

[18] Nipkow T, Paulson LC, Wenzel M. Isabelle/HOL—A Proof Assistant for Higher-Order Logic.

Springer-Verlag. 2002, volume 2283 of LNCS.

[19] Nogueira S, Sampaio A, Mota A. Guided test generation from CSP models. ICTAC 2008. 2008,

volume 5160 of LNCS. 258–273.

[20] Oliveira M, Cavalcanti A, Woodcock J. A denotational semantics for Circus. Electron. Notes

Theor. Comput. Sci., 2007, 187: 107–123.

[21] Roscoe AW. Theory and Practice of Concurrency. Prentice Hall, 1998.

[22] Tillmann N, Schulte W. Parameterized unit tests. SIGSOFT Softw. Eng. Notes, September

2005, 30(5): 253–262.

[23] Tej H, Wolff B. A corrected failure divergence model for csp in isabelle/hol. FME. 1997. 318–

337.

[24] Veanes M, et al. Formal methods and testing. Chapter Model-based Testing of Object-oriented

Reactive Systems with Spec Explorer. Springer, 2008.

[25] Visser W, Pasareanu CS, Khurshid S. Test input generation with Java Path Finder. ISSTA

2004. ACM, 2004. 97–107.

[26] Woodcock J, Cavalcanti A. The semantics of circus. ZB ’02. London, UK. Springer-Verlag. 200.

184–203 2.

