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Fast Gradien t-Domain Video Pro cessing
Using Octree Data Structure

Chunxia Xiao, Yong Tian, and Yu Chu

(School of Computer, Wuhan Univ ersity, Wuhan 430074, China)

Abstract We present a fast gradient domain video processing using hierarchical data
structure which subdivides the processingregion into an octree data. It is hard to handle
large video processing by solving a 3D Poisson equation, as the derived linear system is
usually large. Solving the system requires large memory spaceand long computational time,
which makes it intractable on a standard computer. To address the scalability problem,
rather than processingthe video in the gradient-domain pixel by pixel, we perform the video
processing in a reduced space using octree data structure, which signi�can tly reduces the
variables. We show that the proposed octree approach is e�cien t in both seamlessand
mixing gradient-domain video processing. The method enablesto perform video processing
in greatly reduced computational time and memory space,while receiving visually identical
results with that computed from the full solution.
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1 In tro duction

Many recent imageand video processingalgorithms[1� 5] are operated in the gra-
dient domain basedon the pioneer Poissonimage editing framework [6] . These algo-
rithms work by extracting gradient �elds from oneor more images,processingthe data
to construct a desiredgradient �eld. After that, guided by a user-speci�ed boundary
condition, they reconstruct a new image whosepixels di�erences best �t the desired
gradients. Using color gradients betweenpixels and their 4-connected(or 6-connected
on video) neighbors to construct a desiredguidance�eld, theseapproachesaccomplish
guided interpolation by solving a linear system, i.e. the Poissonequation in the whole
variable space.Traditional solverssuch asPCG (preconditioned conjugate gradients)
with the precondition incomplete Cholesky factorization or multigrid methods[7] are
often usedto compute this system.
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Although the gradient domain method[6] is widely used in image and video pro-
cessing,however, its capability is restricted by the computation complexity and mem-
ory spacerequired to solve a full resolution solution from the derived linear system.
For instance, to compute a set of n pixels problem, we needto solve a linear system
with n variables,when the imageor video to beprocessedhaslargedata, especially for
multi-megapixel imagesand high resolution videos which are commonly used today,
solving such a large system quickly becomesprohibitiv e in terms of time and space
on a standard PC. Thus, although Poissonimage and video compositing are widely
used in image and video processingcommunit y, the scalability has to be addressed.
In this paper, we focus on the method for fast gradient domain video compositing.

Inspired by the work Refs. [8] and [4], we present a fast gradient domain video
compositing using hierarchical data structure. This method is basically basedon the
observation that, in video composition, di�erence betweena simple video color com-
positeand its associated gradient domain video composite is fairly smooth. To remove
this di�erence, we adaptively subdivide the video domain by using a hierarchical spa-
tial octtree data structure. Densesamplepixels are set at the boundary regions,while
coarsesamplepixels are placedon the inside regions. By this means,we can perform
composition in a signi�can tly reduced space,and the derived reduced solution can
be interoperated to reach the full resolution. Although using the hierarchical data
structure, �nal results are visually identical with the full gradient-domain solution.

The main advantages of our hierarchical octree data structure are as follows:
being e�cien t to approximate the full solution with signi�can tly lessconsumption for
both time and space,while the results are visually identical with the full gradient-
domain solution. Our octree data structure e�cien tly addressesscalability problem of
Poissonvideo compositing, and the video compositing can be computed in acceptable
speedand spacerequirement. A shorter version of this paper appeared in Ref. [9].

2 Related W ork

Gradient domain technique[6] has beenwidely usedin computer vision and com-
puter graphics. The basic idea is to minimize the gradient di�erence between the
sourceand the target image & video when gradient �eld of the sourceimage & video
is modi�ed to obtain the target one. A rich body of work has beendone on gradient-
domain image and video processingby the computer graphics and vision communit y.
For further intro duction to the gradient-domain literature, the reader is referred to
Agrawal and Raskar[10] . In this paper, we only review the work that is most relevant
to our gradient domain accelerationformulation.

Sincegradient-domain image processingis presented in computer graphics com-
munit y, a number of applications basedon this method have beendeveloped, such as
the shadow removal by Finlayson et al.[11] , the mutispectral image fusion by Socol-
insky and Wol� [12] , the seamlessvideo editing by Wang et al.[13] , and the image and
video �ltering [14] . Since traditional methods such as PCG or multigrid method[7] is
not e�cien t to solve this problem especially on large data set, such asvideo composit-
ing and video stitching. Many fast algorithms have been investigated. For instance,
as the convergenceof PCG mainly dependson the choice of the precondition, a new
preconditioner has been intro duced by Szeliski[15] to acceleratethis solver. Recently
Kazhdan et al.[16] developed a streaming multigrid solver of the large linear systems
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in just two passes.The solution of Poissonequation can alsobe e�cien tly accelerated
by implementing on the GPU[17� 19] .

Inspired by the accelerationmethod in uid simulation [8] , Agarwala[4] explored
this problem in another way that subdivides the domain using an adapted quadtree,
and solved this system in a reduced spaceway. They show that the quadtree data
structure is an e�cien t method for image gradient-domain compositing. Inspired
by this idea, we address the fundamental scale of the Poisson video compositing
problem, and perform video compositing basedon the hierarchical data structure, we
useoctree data structure instead. We demonstrate that the octree data structure is
e�cien t in both seamlesscloning and mixing gradient [6] . We intro duce the octree
data structure [20] in gradient-domain video compositing, which works well for both
video stitching and compositing.

There are several existing methods using adaptive resolution to solve large linear
systems,discretizepartial di�eren tial equations,or to acceleratethe energyoptimiza-
tion. Szeliski and Shum[21] used quadtreesfor the hierarchical motion estimation in
video; Losassoet al.[8] performed large-scaleuid simulations by solving the Poisson
equation on adaptive octree grids. AseemAgarwala[4] transformed the problem into
a reduced spacemaking compositing e�ectiv ely. Xiao et al.[22] applied hierarchical
data structure to accelerateimage and video edit propagation. Xiao et al.[23] used
a new hierarchical data structure called GaussianKD-T ree to acceleratemean-shift
clustering. Our formulation is inspired by these approaches, and is more general in
its support for video compositing.

3 Gradien t-Domain Video Comp ositing

3D discrete Poissonsolver on video was �rst described by Wang et al.[13] . They
treated the video as a 3D video cube and reconstructed the video via computing the
3D Poissonequation instead of solving 2D Poissonsolver frame by frame, the latter
method will result in the lack of temporal coherencyin luminance and ic ker in color.

Following up their work, we use the 3D integration approach to operate the
spatio-temporal gradient-domain compositing.

3.1 Video gradient-domain compositing

Assuming that we want to composite the region S from source video to the
destination video D using the seamlessPoisson cloning operator. Inspired by the
image Poissonediting [6] , we construct the �nal video R by computing the solution of
the following minimization problem:

R = argmin
ZZZ

kr R � r Sk2with Rj@S = D j@S (1)

where r is the gradient operator and @S is the boundary between S and D, i.e.
the boundary betweenR and S, as shown in Fig. 1. The minimization satis�es the
following equation:

r R = r S with Rj@S = D j@S (2)
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Figure 1. The processof the 3D video compositing. Left: selecting a region S from the source video;

Right: the result region R and the destination video D and the boundary is speci�ed.

Using standard �nite di�erences for discrete equation (2) results in a quadratic
expressionof R:

jN i jRi �
X

j 2 N 6 ( i ) \ S

Rj =
X

j 2 N 6 ( i ) \ (S[ @S)

Si � Sj +
X

j 2 N 6 ( i ) \ @S

D j (3)

whosesolution is obtained by solving the linear system:

Ax = b (4)

where A ij =

8
><

>:

� 1 j 2 N6(i )

N i i = j

0 otherwise

(5)

where b = r S by using Dirichlet boundary conditions.
Here, the subscripts i and j denote pixels i and j in the video, and N6(i ) is the

6-neighbors of pixel i . N i denotesthe number of neighboring pixels i in region S and
the boundary @S. The sparsematrix A is symmetric positive de�nite.

3.2 Gradient-Domain increment method

Perez at al.[6] and Agarwala[4] have presented mathematical formulation of in-
crement method, we extend this method to video compositing. The video data can
be consideredas a 3D video cube.

Let R0 = R � S, then equation (2) becomesthe following Laplace equation with
Dirichlet boundary conditions:

r R0 = 0 with Rj@S = (D � S)@S (6)

Thus equation (3) is transformed into the following equation:

jN i jR0
i �

X

j 2 N 6 ( i ) \ S

R0
j =

X

j 2 N 6 ( i ) \ @S

(D j � Sj ) (7)
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If we usemixing gradient operator[6] , then the following equation is derived:

jN i jR0
i �

X

j 2 N 6 ( i ) \ S

R0
j =

X

j 2 N 6 ( i ) \ (@S[ S)

4 vij +
X

j 2 N 6 ( i ) \ @S

4 B j (8)

where

4 vij =

(
0 if jSi � Sj j > jD i � D j j

D i � D j � (Si � Sj ) otherwise
(9)

4 B j =

(
D j � Sj if jSi � Sj j > jD i � D j j

D i � Si otherwise
(10)

The samematrix A is obtained from equations (7) & (8), in fact, only matrix b
of equation (4) is di�eren t when using seamlesscloning or mixing gradient operator.
Note that the �nal solution of the increment method should add S, i.e. R = R0+ S .
Actually we have proven that it is also e�cien t when S is the mixing gradient.

3.3 Octree data structure

Intrinsically increment method is basedon the di�erence betweenthe initial val-
uesused to solve the 3D Poissonequation and the �nal result which is computed by
using the full solution, that is, the large linear system (4) is solved accurately. Once
we get a good priori that the �nal result is approximate to the initial values, i.e. the

Figure 2. Comparison of video (500 � 300 � 60) compositing using two di�eren t algorithms, we

composite the urus into another world of snow. (a) and (b) denote the source video and the target

one. (c) Video compositing using full solution. (d) Result using our accelerating algorithm by octree

data structure.
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di�erence is largely smooth, somee�cien t methods to approximate the result can be
used. Inspired by Ref. [4] that usesa quadtree to subdivide the domain of the image
and[8] that e�cien tly computesthe uid simulation with an octree data structure, we
intro duce the octree data structure 3D Poissonequation for fast video compositing.

In order to approximate the di�erence basedon the increment method as good
as possible, the octree tree is maximally subdivided to pixel-sized nodes along the
boundary @S between the region S and destination video D, on the contrary , the
octree usescoarseresolution away from the boundary @S, since in most casesvideo
compositing only results in a gradually changefrom the boundary towards inside and
even keepsoriginal patterns inside. We denote the octree with a pointer basedoctree
which means that every non-leaf node contains eight pointers presenting the eight
children that subdivide the video into eight quadrants, while the leaf-nodes contain
the pointer pointing to the maximally subdivided cell. Two constraint conditions have
been used to restrict the octree. As Fig. 3 shows, �rstly , we restrict a T-junction
node both on the edges(red dots) and in the face (blue dot) of a cell. The variables
(black dots) only lies on the cornersof a leaf node, and we do not set variableson the
T-junction nodes, since linear interpolation and bi-linear interpolation can be used
to compute their values from their neighbors on edgesor faces. Secondly, no two
leaf nodes which share a common face may di�er in tree depth more than one. So
gradual reduction of variables from the boundary toward inside will perform well to
approximate the di�erence.

Figure 3. (a) Illustration of the octree data structure. The T-junction nodes lie on the middle of

the common edge or center of the common face which two leaf nodes with di�eren t tree depth share.

As (a) shows, the black dots are the normal nodes and the red ones are T-junction nodes on edge,

blue dot is the T-junction node on face. The variables on the T-junction nodes are not necessary

as they can be interp olated by linearly or bi-linearly interp olation. (b) The subdivided video using

octree data structure of Urus as showed in Fig. 2. We subdivide the video using a pointer-based

octree that maximally subdivided to pixel-sized nodes along the boundary.

Once the restricted octree is constructed, the matrix A and b in equation (4)
are easily computed by using the octree traversal algorithm [20] . Since the original
linear systemwith n � n variablescan be reducedto much smaller linear systemwith
m � m variables, the derived linear systemcan be computed much faster. We usethe
PCG(preconditioned conjugate gradients) with incomplete Cholesky factorization as
the precondition[7] to solve this linear system. After the system is computed, we use
tri-linear interpolation to compute the remaining variables, thus the �nal full video
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is reconstructed. As illustrated in Fig. 2, our accelerationmethod producesvisually
identical results with that computed from the full solution.

4 Computational Complexit y Analysis

The quadtree complexity theorem[24] states that the size of the quadtree rep-
resentation of a region is linear in the perimeter of the region. Meagher at al.[25]

prove that the Quadtree complexity theorem also holds for three dimensional data
(octree instead of quadtree) where perimeter is replaced by surface area as well as
higher dimensions: the sizeof the k-dimensionalquadtreeof a k-dimensionalobject is
proportional to the sum of the resolution of the quadtree and the sizeof the (k � 1)-
dimensional exterior interface of the object. This means that the application of a
quadtree algorithm to a problem in d-dimensional spaceexecutesin time propor-
tional to the analogousarray-basedalgorithm in the (d � 1)-dimensional spaceof the
original d dimensional image. Most algorithms that executeon the particular imple-
mentation of quadtree&octree data structure not only reducethe amount of memory
required but also computation cost. In particular, most algorithms that executeon a
octtree representation of a video have an execution time that is proportional to the
number of blocks in the video rather than the number of pixels.

Since our edit propagation function is constructed using the hierarchical data
structure (octree), both the memory consumption and time complexity are signi�-
cantly reduced, which are bounded by the solution of the reduced m-variable linear
system. The Quadtree complexity theorem[24] showed that the number of quadtree
nodesin an image quadtree is O(p), where p is the perimeter of the image. In caseof
video volume, in our algorithm, the octree is denselysampled around the boundary
surface,number of octree nodesin a volume octree is O(p), where p is the total area
of the boundary surfaces.

As shown in Fig. 4, Fig. 5, Fig. 6, and Fig. 7, comparedwith the full resolution
solution, weachievevisually equivalent results by solving a dramatically smaller linear
system. Samet and Webber[25] show that an e�cien t implementation of the pointer-
basedrepresentation is often more space-wiseeconomicfor constructing Quadtreeand
Octree, especially for imagesof higher dimension. We usethe top-down pointer-based
octree traversal algorithm [27] for 8-neighbor traversal, the representation requires as
little as 2N bytes, where N is the number of nodesin the tree.

5 Implemen tation Results and Discussions

As Samet[20] states, there exist pointer and pointer-lessquadtree or octree. The
former is more exible for programming and the latter is consideredasmore compact.
To make our method tractable, we usethe pointer octree.

In our algorithm, the required memory and time are bounded by the solution of
the m-variable linear system. Compositing a video regionof n pixels using full solution
requiressolving a full linear system with O(n) variables. As shown in computational
complexity analysis by Samet et al.[26] and Agarwala[4] , using the quadtree data
structure, the n variables can be reducedin m variables, where m is O(p), where the
grows of p dependson the length of the boundary of the interactive region, for typical
cases,we observe that p is O(

p
n). In caseof video volume, in our algorithm, the



36 International Journal of Software and Informatics, Volume 6, Issue 1 (2012)

octree is denselysampledaround the boundary surface,number of octree nodes in a
volume is O(p), in which p is the total area of the boundary surfaces.

We compareour technique with the algorithms in Ref. [13] for several data sets
of di�eren t sizes(Table 1), which shows several results that the traditional techniques
is di�cult to handle due to the long time and high spacerequirement. We measure
the performance of these algorithms on an Intel Core2 Duo 2.6 GHz machine with
2GB of RAM.

Figure 4. An example of video(500 � 300 � 50) compositing using mixing gradient operator, the

sun is cloned into the destination video, the �rst frame is showed. (a) Source video sunset. (b)

Destination video of the sceneof smog. (c) Result of full solution. (d) Result of our method based

on octree.

Figure 5. The moving fox is cloned into its righ t side (500 � 300 � 88) using the seamlesscloning

operator, the �rst frame is showed. (a) the source video with only one fox (b) the result of full

solution. (c) the result using octree.
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Figure 6. The sharks are cloned (500� 400� 90) using the seamlesscloning operator, the �rst frame

is showed, (a) the source video with sharks, (b) the result of full solution. (c) the result using octree.

Figure 7. Video composting (500 � 300� 70). (a) The source video deer, (b) the destination video,

(c) Composition result based on full solution; (d) Composition result based on octree approach.

Table1 showsthe performancecomparisonof two algorithms for several gradient-
domain compositing of di�eren t sizes. For each dataset, we give the number of
megapixelsof the region S (Mpixels), the number of variables per color channel in
the reduced linear system as a percentage of the total number of pixels(Var-rate),
the time our algorithm and the traditional computing method (Time), and the mem-
ory consuming. Here, FS denotesthe full solution using PCG with the precondition
incomplete Cholesky factorization, Otr denotesour acceleratedmethod using octree
structure.
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Table 1 Performance comparison bet ween full solution and our algorithm on
di�eren t video data

Time(s) Memory(MB)
Dataset Mpixels Var-rate(%) Otr FS Otr FS

Wolf 1.8 0.028 0.5 13 11 98

Sunset 2.7 0.027 2.1 32 17 137

Fox 4.6 0.02 3.4 203 21 826

Deer 5.3 0.027 5.8 78 37 262

Shark 13 0.011 3.3 177 25 618

Urus 16.3 0.018 6.2 310 28 912

Figure 2, Fig. 4, Fig. 5, Fig. 6, Fig. 7, and Fig. 8 show that our method is
e�cien t to acceleratethe video compositing, and achievesvisually identical result with
the full solution. Fig. 2 illustrates that the urus is composited seamlesslyinto another
world of snow using both of the two di�eren t algorithms. As Fig. 4 demonstrates,
the moving sun is cloned to the dark cloud of the destination video, full solution
is shown in Fig. 4(c), and Fig. 4(d) are the results computed through iteration in
the maximally subdivided octree cells using octree data structure, while no visual
di�erence can be seenin the results.

Figure 8. An example of self-composition (400 � 300 � 70). We composite the wolf itself in this

scene. (a) The source video wolf; (b) Result of full solution; (c) Result based on octree approach;

(d) A pack of wolves using our method.
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Figure 5, Fig. 6 and Fig. 8 show examplesof cloning, that is, the moving objects
is pasted in the same video. As illustrated in Fig. 6, for example, our results are
visual to the full solution. In Fig. 5 we clone the target fox from the sourcevideo,
and combine it with the sourcevideo. A moving deer is fused to another video with
deers,we alsogive the comparisonresult. We repeat the compositing for several times
in Fig. 8, from which a o ck of wolvesare generated.

Although our accelerationmethod is e�cien t for Poissonvideo compositing, this
transformation may not be possible for all problems, however, while in somecases,
our method may fail. Figure 9 givesan examplethat our method failed. Obviously a
blurry result is reconstructedby our approach. Our approach works well if the Poisson
video compositing problem can be transformed into a spacewhere the solution is
mostly smooth in the inside regions,and the pattern of smoothnesscan be predicted,
that is, the degreeof smoothnesswill a�ect the e�ciency of the composition results.
As shown in Fig. 9, both the source video and target video are not smooth. In
addition, the color di�ers greatly (red �re and green water), in this situation, it is
di�cult for our methods to generatea satis�able result.

Figure 9. Failed example using our method. Video compositing using the mixing gradient operator,

the �re appeared in the green waterfall in the result. (a) the source video �re; (b) the destination

video waterfall; (c) the result using full solution; (d) the result using our algorithm. Our algorithm

failed in this example as the �nal result changes too much both inside and close to the boundary

region compared with source video. As a result, simple linearly interp olation based on octree only

results in a blurry result.
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As Table 1 shows the reduced variables are typically 98% � 99% smaller. The
results can receive visually identical with the full solution for video compositing when
the color of processedvideo changesgradually from the boundary toward inside and
keepsoriginal patterns inside. However, this approach will fail at the condition when
inside patterns change too much, where octree data structure only approximates a
blurry result (Fig. 9), as simple linear interpolation doesnot work well.

6 Conclusion and Future W ork

We have intro duced an e�cien t approach to acceleratethe Poissonvideo com-
positing using the octree data structure. With this novel technique, we reduce the
large linear system into a dramatically smaller one, and thus the time complexity
and memory requirement are signi�can tly reduced,while obtaining visually identical
results to that computed from the full solution. By this means, we have e�cien tly
addressedthe scalability problem of Poisson video compositing, which makes the
proposedmethod more practical for processinglarge video on a standard computer.

We presented a fast gradient domain video compositing using hierarchical data
structure which subdivides the compositing region into an octree data. To handle
large video compositing by solving a 3D Poissonequation, the derived linear system
is usually large, and solving the system requires large memory spaceand long com-
putational time, which makesit intractable on a standard computer. To addressthe
scalability problem, rather than compositing the video in the gradient-domain pixel
by pixel, we performed the video compositing in a reduced spaceusing octree data
structure, which signi�can tly reducesthe variables. We have shown that the proposed
octree approach is e�cien t in both seamlesscloning and mixing gradient and enables
to perform gradient-domain video compositing in greatly reducedcomputational time
and memory space,while receivingvisually identical results with that computed from
the full solution.
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